BCSSS

International Encyclopedia of Systems and Cybernetics

2nd Edition, as published by Charles François 2004 Presented by the Bertalanffy Center for the Study of Systems Science Vienna for public access.

About

The International Encyclopedia of Systems and Cybernetics was first edited and published by the system scientist Charles François in 1997. The online version that is provided here was based on the 2nd edition in 2004. It was uploaded and gifted to the center by ASC president Michael Lissack in 2019; the BCSSS purchased the rights for the re-publication of this volume in 200?. In 2018, the original editor expressed his wish to pass on the stewardship over the maintenance and further development of the encyclopedia to the Bertalanffy Center. In the future, the BCSSS seeks to further develop the encyclopedia by open collaboration within the systems sciences. Until the center has found and been able to implement an adequate technical solution for this, the static website is made accessible for the benefit of public scholarship and education.

A B C D E F G H I J K L M N O P Q R S T U V W Y Z

SYSTEMS: the THERMODYNAMICAL viewpoint 1)

From the thermodynamics viewpoint, systems may be differentiated within three basic categories, which E. SCHWARZ describes as the follows:

"Non-conservative systems are called dissipative, since part of their energy dissipates as heat" (1990, p.100).

It should be observed that all concrete systems are non-conservative. Furthermore the "equilibrated" systems of whom the author speaks in the next paragraph as having attained "the state of maximum disorder", are devoid of structures and incapable of carrying out any function.

SCHWARZ pursues: "The closed systems, isolated from the environment find themselves either equilibrated (characterized by a maximum entropy, i.e. in a state of maximum disorder), or near the equilibrium, in this case they tend towards the equilibrium state (maximum entropy)" (Ibid).

The so-called "isolated system" is a mere abstraction (See the discussion of the terms "isolated", "closed ", "open") which serves to explain the 2d. Principle of thermodynamics. An imperfect model of such a system can be obtain by enclosing a gas in a tight container. Such a "system" is however unable to develop any organized activity.

Next E. SCHWARZ describes "the dissipative- open systems… near the equilibrium… described by a quite precise equation, which permits to compute the stationary state towards which they tend" (Ibid). See "Systems near equilibrium".

Finally: "The dissipative-open systems far away from equilibrium are described by differential equations where the relation between the general forces and the flows is not anymore linear" (Ibid. p.101).

These systems may evolute "toward a (more) organized state, with decrease of internal entropy (by importing negentropy from their environment)" (Ibid, p.102).

This last statement is debatable at least in its formulation. Highly organized systems have a higher rate of entropy production, which is the price they have to pay for their superior degree of organization. However they maintain this by discharging in their environment considerable quantities of degraded energy.

Categories

  • 1) General information
  • 2) Methodology or model
  • 3) Epistemology, ontology and semantics
  • 4) Human sciences
  • 5) Discipline oriented

Publisher

Bertalanffy Center for the Study of Systems Science(2020).

To cite this page, please use the following information:

Bertalanffy Center for the Study of Systems Science (2020). Title of the entry. In Charles François (Ed.), International Encyclopedia of Systems and Cybernetics (2). Retrieved from www.systemspedia.org/[full/url]


We thank the following partners for making the open access of this volume possible: